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ABSTRACT

Tlli paper reviews the basic mass, momentum and energy equations used in typical

compute~ codes for Heat Transport System simulation. The equations are de~ived from first

prindples and the necessary approximations iead to the requirements for empiricsl

correlations. Closun, is obtained by the equation ofstate.

1. INTRODUCTION

The known territory of the basic mass, energy and momentum conservation equations

(Bird et al [1 j) is explored, herein, from th~ perspective of thermalhydraulic systems analy;;is

for nuclear reactors.

Invariably in the modelling of fluids, the conservation equations are cast in one oi two

main forms: integral or distributed approach, respectively (Currie (2)). The differential form

see; infrequent use in the analysi;; of thermohydraulic systems since the cost and complexity

of such a detailed analysis on even a single complex componen~ of a system is enormous,

which makes this route to the analysis of systems of such complex components unrealizable.

Recourse is generally made to the integral or lumped form SO that inter-relationships of

various components comprising a system can be simulated. Necessarily, the models used for

the indh-idual components are much simpler than that of the detailed models based on the

distributed approa=h. Great care must be taken to ensure that the simpler models of the

integral approach are properly formulated and not misused.

It behooves us, then, to develop the ;nodels used in thermohydraulic systems analysis

from first principles. This will provide a traceable and veriflable methodology to aid

development lUld v..lidation of system codes, to lucidate the necessary assumptions made, to

show pitfalls, to show the common roots and genealogy of specific toob like FLASH (3),

SOPHT (4), RETRAN (5), FIREBIRD (6), etc., and to help guide future development.

The exploration proceeds by first establishing and discussing the general principle of

conservation. Next, this general principle is applied in turn to mass, momentum and energy
. .

to ...rrive at the specific forms commonly ·seen in the systems approach. Closure is then given

via the equation cf state and by supporting empirical correlation. Finally, the ideas

' .
•~.. ~ ,< •

WJG-09a 1



·.

developed are codified in a diagrammatical representation to aid in the physical interpreta

tion of these systems of equations and to provide a summary of the main characteristics of

fluid systems.

2. CONSERVATION.

We start, both historically and pedagogically. with a basic experimental observation:

"CONSERVATION".

This was, and is, most easily understood in terms of mass:

",mAT GOES IN MUST COME OUT UNLESS IT STAYS 'rHERE

OR IS GENERATED OR L05'T SOMEHOW".

Although this should be self-evident, it is important to realize that this is an experitr.ental

observation.

If we further assume that we have a continuum, we elm mathematically recast Our

basic experimental observation for any Held variable, qr:

rJ. S· nds,

where

:"
DlDt=

'II =

r =

'P =

t =

s =

n =

S =

substantial derivative' '" change due to time variations plus change due to

movement in space at the velocity of the Held variable, 'P,

arbitrary fluid volume,

net sum oflocal sources and local sinks of the field variable, 'P, within the

volume'll.

Held variable such as mass. momentum, energy, etc.

time

surface bounding the volume, 'II

unit vector normal to the surface, and

net sum of local sources and local sinks of the fluid variable, q;, on the

surface s.

We can now use Reynold's Transport Theorem (a math~maticalidentity) (Currie, [2]):

~t f fL'P d'll = ff Iv ::d'll + f1. 'P V'n ds

aDd
+Fora lucid discnssion ofthe three time derivatives, -' -c-' -' see Bird etal [II. page 73.

at at dt

2

(2)



where

alat = local time derivative, and

V = velocity of the field variable,

to give

IIIV :: dV = - II5 ~ V·n ds + IIIV rdV + I I. S . nds. (3)

In words, this states that the change in the conserved field variabie ~ in the volume 'r/ is due

to surface flux Jllus sources minus sinks. We can use another mathematical identity (Gauss'

Divergence Theorem):

j Is A·nds= JI Iv V·Adv

where

A = any vector, such as v"locity, and

V = Dzl o~rator (eg. V = alax i + alay j + ...) .

Thus equation (3) can be rewritten:

IJIv:: d'. = - IILv.~ Vd\f + JIIv rd\f + JIIv V ·Sd'r/.

(4)

(5)

If we assume that this statement is uuiversally true, i.e. for any vvlumc within the system

under consideration, then the following identity must hold at each point in space:

ilqI = _ V·~ V + r + V . S. (6)
at

This is the clistributed or microscopic wrm. Equation (3) is the lumped or macmscopic form.

They are equivalent and one can move freely back and forth between the two forms as long as

the field variables are continuous.

The above derivation path is not unique. One could start with an incremental volume

and deriv.e (1) via (6). It is largely a question of personal choice and the end use. One school of

thought, attended by most scientists, applied mathematicians and academics, since they

usua l!y deal with the local or microscopic approach, focuses on the conversion of the surface

integrals to volume integrals using Gauss' Theorem. The volume integrals are ihen dropped

giving the partial differential or microscopic form. This path works well when a detailed

analysis is desired, such as subchannel flow in fuel bundles, 'moderator circulation in the

calandria, etc.

The second school, which sees more favour among engineers, partiCularly in the

chemical industry, evaluates the surface integrals as they stand without converting to

volume integrals. This leads to a lumped or macroscopic approach useful for network

analysis, distillation towers, etc.

,
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There exists a very large number of possible derivations, each with its own

advantages and disadvantages. As more and more detail is picked up in each class of models,

numerical means have to be used. In the limit of large numbers ofnodes or mesh points, etc.,

both methods converge to the same solution.

Since the above equations are basic to all subsequent modelling of thermalhydraulic

systems, one should keep in mind the basis for these equations:

1) Conservation as an experimental observation.

This is usually taken for granted. However, when the conservation equations for

separ9.te phases in a mixture are under considecation, the various sinks and .ources of

mass, momentum and energy arc not entirely known &nd the interpretation of

experimental data can be difficult because of the complexity. It helps to keep in mind

the distinctly difierent roles that we have historically assigned to the players in the

conservation process:

i
. ./

2)

a) the local time derivative, alp/at,

b) the advection term {flux), V"IN,

c) the local sinks and sources. r, within a volume and

d) the local"sinks and sources, S, on the surface ofa velume.

If a clarity of fOT!ll is adopted by establishing and maintaining a o"e-to-one

correspondence between the form and the physical processes, then a substantial

pedagogical tool will have heen achieved. This proves invaluable in <,rperimental

design (to zero in on a particluar process 0, parameter), model formulation and

interpretation, data analysis and presentation, correlation development, etc. A model

could lose its generality because, for instance, fluxes across interfaces are written as a

term in r. thus making the interfacial flux a local phenomena rather than a bo,indary

phenomena. This may be acceptable for a single geometry but causes the model to

break down when applied to dh'erse geometries.

The field variables are continuous within the volume V.

'fhis is also usually taken for granted. But care must be exercised in m1Jltiphase flow

where discontinuities abound. A common approach, W<l\n to simplify the complexity

of multiphase flow. is'to average the terms in ilie conservation equations across ilie

cross-sectional area of the flow path. One could speculate that the error introduced in

this manner could separate the model from reality enough to make ilie solutions be

flunrea1fl
, i.e. complex numbers, singularities, etc. Further, fluctuating parameters

are often smoothed by averaging over an appropriate 6t. These averaged parameters

and products of parameters are used in models and compared to experiments. Bet

there is no guarantee that, for instance,
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~ I qrVdt=(2- r qrdt)(~ I Vdt).
At l>t At 'l>t At l>t

Thus the use of time averaged parameters can lead to additional errors. Indeed,

because of the possibility of error dUE to space and time disontinuities, several

investigators have offen'd rigorous treatments for the distributed approach (see, for

example, Delhaye [7)). There is no reason why these treatments could not be applied

to the lumped approach, as well. But, at this time, there is little incentive to do so

since grid coarseness and "xperirr.ental data are larger sources of error. As always,

the operative rule is - BUYER BEWARE

We now proceed 00 trEat the mass, momentum and energy eque-tior.s in turn.

3. THE CONSERVATION OF' MASS

Historically, mass was the first variable observed to be conserved:

II Iv ~ (YtPk)d'v' = - IIs l'kPk Vk'nds+ II Iv fkd'v' + II. Skn-ds (7)

where

P, = densit.y ofphase k (l ~ liquid,2 == vap<lur),

Y, = "olume fraction ofphase, k, in volume 'v', and

r ,. S, = phase sinks and sources, including chemical and nuclear effects.

The individual densities are related as follows:

p= Y,P, + y.p. = (1-a)p, + ap.,

where

p = average density, and

Q == void fraction.

(8)

The 'overbar', - serves, to remind us that the volume fraction weighted sum must be

performed.

But addi!lg both phages together, equation (7) becomes:

IIL; [(1-a)P I +aP21d'v' =

- I Is [(1"':'0)"1 V1+aP2 V2)·nds+ IIL<rl+r~d'v'. (9)

In OI!r'=8Se, f. = - r. Oiquid boils or vapour condenses) and Sk = 0 (no mass sources or sinks

at surfaces). Therefore:

. \
.j where

IJLap

at d'v' = - f t

5

pV· n ds , (10)



pV =(1-a)p,V. + aP2V2

If we apply Gauss' Thecrem and drop the integrals we have:

ap
- + V· pV =0
at.

or

(11)

(12)

._'" .
:-':'·1,

a
at. [(I-a)p! + aP2)+V. [(l-a)P1V1 + ap2V2) =0 . (13)

This is the distributed form useful for modelling detailed now patterns such as in the

calandria, vessels, steam generators and headers. Component codes such as THIRST [8] and

COBRA [9) use this approach.

In contrast. system code5 sl1ch as SOPHT [4] and FIREBIRD [61, both based cn

Porschi..,g's work [31. us~ the lumped equations. These codes represent a hydraulic network of

pipes by nodes joined by links. Mass, pressure and energy changes occ"r at the nedes.

Momentum changes occur in the links. 'rhus the network is treated on a macroscopic scale

requiring an integral approach to the fundamental equations. Flow details in pipes are not

considered. That is, duTusion, dispersion, advectien, flow regimes, noV! profiles, etc. ace not

fundame:ltaJly acccunted for but are ccvilred by empirical correlations. Averaging

techniques, commonly used in the distributed approach ere not· used in the lumped approach

mainly because there is little incentive to do so. The main sources of error lie elsewhere,

mainly in the coarser-ess of the discretization b the dire~tion of flow (i.e. node size) and in

friction factors and heat transfer coefficients.

Now, Iff. pdV is the mass, M" in the volume, Vi. of the ith nnde. Also, for Our <:ase, the

surface mtegral can be written as surface integrals over the uldividual flow paths into and out

of the volume or node. That is,

-II pV -nds= 2: p.V. A., (14)s . J J J
J

where j represents inflow and outflow lUtks with V. > 0 for inflow and < 0 for outflow.
1

Inherent. in equation (11) is the assumption that the integral, If PV·nds can be replaced boo•
the siraple product p. V. A.. This implies known or assumed (us"ally uniform) velocity and

J 1 J

density profile across the face of the link (or pipe).

Thus we now have:

where W. is the mass flow. This is the typical representation in system codes.
J

node-link type equations, we must add two more assumptions:

i) nodalization, and

6
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ii) assumed velocity and density profile across the cross-section ofa pipe.

These assumptions have far reaching ramifications that are not immediately obvious.

No flow detail is considered as the fluid moves along a pipe. Therefore, no diffusion,

dispersion, advecllon, flow profiles or flow regimes are explicitly permitted. This is not too

crude an approximation for the calculation of pressure drops and flows but for modelling the

propagation ofdisturbances, this approach is inadequate as it stands unless a large number of

nodes and links are used.

To show this, consider a homogeneous or bubbly flow through a pipe, as in the two

phase regions of typical heat transport systems in nudear reactors, modelled in system codes

as nodes connected by links, Perfect mixing at the nodes is assumed. Flow in a pipe,

however, has aspects oi plllg flow. That is, flow is transcitt£d along the l'ipe relatively

undisturbed. If no' diffusion or turbulent disj>ersion existed, a sharp discontinuity in a

property would propagate un!!isturbed. If a single mixing tank (node) represente!! a section of

pipe of volume, V, and vclumetric flow, V, tllen a step change to zero in a field property, C,

(which could be cCIl~entration or density) entering the r.ode would be an exponential by the

time it left the node, that is:

C
OUT

=C
1N

e-tIt

where "t = 'IN; "t is also the transmission time for the plug flow model. If the pipe were

ffiodelle!! by two nodes in series,

COUTNODE2 = CINNODEI X (l + 2Ih)e-
2tJt

,

and in general, for n nodes.

n

COUTNODE =C1N NODE 1 X e-ntlt ':> (nU"t)k-l/(n_l);
k=l

Figure 1 compares the transmission of a step change for various numbers of nodes and

the plug flow model. It is easy to see why the codes model void propagation poorly. A very

large number of nodes are needed to transmit a disturbance.without appreciable distortion.

The phaze relationships or timing, of the propagation is very important in determining tile

stability of a tilermal hydraulic system. A pocket vf voi!! res.ching a given destination at an

earlier or later time may inhance or cancel the phenomenon in lIuestion. The smearing of a

wave front alters the timing and gain and hence affects stability. The slow convergence of the

mixing model to the plug flow model explains the typically slow convergence of such system

codes.

Thus, nodalization creates a form of diffusion in much tile same manner as finite

difference schemes create numerical diffusion (see, for instance, Roache [lOll.

7



Attaining convergence in nodalization is, in essence, converging the model to plug

flow behaviour. But is the flow in typical heat transport systems plug flow?

Flow in t.he CANDU feeders (38 to 76 mm) at 15 Mlsec may indeed be plug flow. But

some turbulent mixing does take place. More importantly, the feeders are of varying length

and the flow has a spectrum of qualities. This gives quite a spectrum in transit time; This

will skew the propagation of a disturbance. Thus. depending on the transit time spectrum, a

5 node approximatior. (say) may be quite a good representation.

The risers and headers may also give more diffusion than plug flow. These pipes are

large diameter and the flow is turbulent. Very little is know of flow regimes and propagation

properties in these situations:

In short, careful attention should be given to nodalization for meaningful simulation,

quite apart from the norma: numerical concerns such as the Courant limit, etc.

To conclude our progressivI' simplification, we note the steady state form of equation

(J.5):

~ Pj Vi Ai EO ') Wi = 0 (6)
J

For a simple ei:"cuJar flow loop, the mass flow rate at steady statP. is a constant at any

point in th.e loop. Local area and density variations thus give rise to velocity variations

around the loop.

Local velocity then is:

w
V=

pA

4. THE CONSERVATJON OF MOMENTUM

(7)

Newton observed that momentum is conserv"d, Le. a body moves in a straight line

unless forced to do otherwise. This is equivalent to a force balance if the inertial force (a

momentum sink of sorts) is recognized. In the integral sense, the rate of change of momentum

is equal to the forces acting on the fluid. Thus:

~t IILYkPkVkd'lf = j Is Ok ·nds+ IILYkPkfkd~ + II L Mkd'lf , (18)

where

° is the stress tensor (i.e., short range or surface effects including pressure,

viscosity, etc.!,

f is the long range or body force (Le., gravity),

and

8



M is the momentum interchange function accounting for phase change effects.

Using Reynold's T,a...,.sport Theorem, we get:

J J L ; (Yk Pk Vk)dV + J Is (Y. Pk Vk)(Vk- n)ds

Adding both phases together as per the mass e,!uation, we find:

J J L; pVdV+ J !sPV(VnldS= J Is (J·nds+ J J LPfd'i.

(9)

(20)

To get the microscopic form we use Gauss's theorem and drop the volum~ inte(rral as before to

leave:

a -
-(pV)+V· pVV=V· 0+ pf
at

The stress tensor, 0, can be split into the normal and shear components:

C1 = -PI + t,

(21)

(22)

where P is the pressure, I is the unity tensor and t is the shear stress tensor. This enables the

explicit use of pressure and helps maintain our tenuo"S link with reality. Of course, it can

"'lually b~ introduced in the integral f"rm, Equatio:1 (20), or as a separate pressure for each

phase in equation (9). At any rate, Equation (21) becomes:

a -
-(pV)+V- pVV =VP+V-t+ pf (23)
at

This is the form commonly seen in the literature, useful for distributed modelling as

per the mass conservation equation. The term, V·t, is usually replaced by an empirical

relation. For the system codes using the node-link structure, we switch back to the

macroscopic form, Equation (20)_

1£ the surface integral for the advective term is performed over the inlet and outlet

areasof the pipe (link) in question, then:

JJspvev- n)ds= JL pvev- u)ds+ J L pV(V- n)ds, (24)

IN OUT
where~ is the flow inlet area and A

OUT
is the flow outlet area. 1f we assume the properties

are constant over the areas, thim;

V
apv

-A P V V +A p V V = J J C1 • nds+ J J J pfd'i.
at IN IN IN IN OUT OUT OUT OUT S k v

Alternatively we could perform a cross-sectional average of each term, usually denoted by

< >,where <0> = l/AJI Ods. If we assume the properties, V,pandAareconstantalong•
the lenfrlh of the pipe, then the second and third terI!lS cancel.

Equation (25) can be rewritten as:

WJG-09b 9 •...



(26)~.~~":;;'
- ~:":j

>j a~v = _ f Is PI· n ds + f f Iv (V • ~ + pC) d >j

't'P(fL )VlVl - .=-AOUTPOUT + AIN PIN - L D + k 2g - LAp S1D(9) glgc '
c

where g is the gravitatillnal constant, g is the acceleration due to gravity and where V·~ aud,
pf evaluated by empirical correlations (the standard friction factor) plus an elevation change

term (9 is the angle w.r.t. the horizontal).

Assuming one dimensional flow and defining the mass flow as W E PVA, and L as the

pipe length, Equation (26) becomes:

J~ = ~ [eP _p )_ (fL + k) W
2

_ Ap gig sin(S) ,
at L IN OUT D 2 A2 c

gc P

(27)

which is the form typically used in system codes.

•Ifcircumstances require, e>-tra terms can be added. For instance, ifa pump is present

this can be considered to be an external force acting through head, APpump' Equation (27)

would then become:

aw
L"i" 0= AOUTPOUT + AINP IN + A A P pump + .... . (28)

The momentum flux terms (Apyo) in Equation (25) could also be added if large e.rea or

properly changes were present.

In the steady state, for a constant area pipe with nr pump and no elevation change:

(
fL ) V

2
, fL ) W

2

PIN - POUT = P - + k - = ( - +k. (29)
D 2gc \ D 2A2pgc

As a final note, the assumptions made for the mixture momentum equation are thus

similar to those made for the mixture mass equation and the same comments apply. One

cannot hope to accurately model such phenomena as void propagation and other two phase

transient flow effects using lumped single phase equations unless a large number of nodes

and links are .used.

5. THE CONSERVATION OF ENERGY

By the early 1800's, philosophical jumps were made in recognizing that heat was not a

substance and in the emergence of electromagnetic theory. The concept of energy as we now

think of it was formulated and it was found that energy, too, was conserved, as long as we

carefully identify all the different forms "Of energy (kinetic, chemical, potential, nuclear,

internal, electromagnetic, ...L

The mathematical statement of the conservation ofenergy is:
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(30)

where

e. = internal energy ofphase k,

q. = surface heat flux for phase k, and

E. = internal heat sources and sinks of phase k.

The left hand side is the substantial derivative of the internal plus kinetic energy.

The right haud side terms are.. respectively:

1) surface heat flux,

2) internal sources and sinks,

3) work due to long range body forces (gravity, etc.l,

4) work due to short range forces (surface tension, pressure, etc.).

Using Reynold's Transport Theorem again:

r f L; [Y k Pk (ck+ ~ V~)] dV + f Is Yk Pk (ek+ ~ V~)Vk' n ds

=-f !sqk-nds+f fLEkdV+f f LYkPkfk,Vk<!V+f fs(Ok- n )- Vkd~
Sumlr...ing over k. the mixture equation becomes:

=- f !sq-nds+ 11 LEdV+ f f L pf- VdV+ f !s(o.n). Vds,

where

pe=Y,P, c, + Y, P, e, and E = El + E" etc.

Using Gauss' Theorem to change some of the surface integral. to volume integrals:

(31)

(32)

(11 a - 1-2 11-J v at [pe + 2 pV ldV + S pe v-

=-Ifsq-nds+IJLEdV+IILpf- vdv+lfLv. -(0- V)-dV. (33)

Since

a = -PI +~,

1I Iv v- (0- V)dV= II L[V- (~l-V- (PV)JdV.

II



)
This is the total energy equation, composed of thermal terms and mechanical terms.

We can separate the two by first generating tile mechanical terms from the momentum

equation (Equation 20). Forming the dot product with velocity we get:

ffL;(PVl' vdv+ffLv. (Y. PVVldV=ffLv. (V. lO)dV

-11fv v· VP dV + JJJv pf· v· dV .

Now

V· (V·lO) = V(,,·V) - ,,: VV,

v· VP= V·(PV) - P v·v,

a a (1 ) a (1 2)V'-(pVl= - -pV·V '" - - ,V
at at2 at2 P

and

v· (V. pVV)=V· (~pV2V)
\2 .

Using these identities and fiubtracting Equetion (34) from Equation (33), we get:

IJL; (pe)dV+ 1Is peV· nds=- IIs q·nds

(34)

(35)

(36)

(37)

(38)

(34)

This is the thermal f"rm of the energy equation. This form of the enecgy equation can be used

to generate the thermal conductanoe equation for solids. By setting fluid velocity to zerc and

converting surface integrals to volume int$als we get the distributed form:

a
at (pe) '" - v . q + E ,

where E is the internal energy generation rate term.

From thermodynamics, for solids, we have:

a ae i!J'
- (pel =p - '" pC 
at at Vat

and using Fourier's law for heat conduction:

q ",. -kVT,

we have the classical form of the heat conduction equation:

·aT
pC -=V· kYT+E

V at

(40)

(4).)

(42)

'" k y 2 T + E for space independent k. (43)
This is useful for detxrmining the temperature distributions in boiler tube walls, piping walls

and reaCtor fuel pencils. To generate the mde-link forms we now turn back to the ;ntegral

12



form of Equation (39). If we aSSume that the density and enthalpy are uniform over the node

. (the volume in question), then

where

U E vji; = LApe.

(44)

(45)

The integral of the transport term can be written over th? flow surfaces:

IJ pe v· n ds = II pe v· n d·s + II pe v· n ds + .... , (46)

S ~ ~

where A , A , etc. are the pipe flow cross-sectional areas. For inflow, V'n is negative. For1 .~ .

outflow, V·n is positive. Assuming uniform velocity, enthalpy and density across the link

(pipe) cress-section gives:

I Is pe Y ·nds = ")
IN FLOW

pc V Ai + I
OUTFLOW

pe Y A.
I

~ ~ ~
= - L W1NeIN + L v..·OUTeOU'l·

The heat flux and generation terms of the therrr.al ,:nerlr.l equation c.a.... be lumped into a

losely defined h"at source ior the volume:

- f Is q·nds+ f f LEdVEQ. (48)

Therefore, t..l,.e thermal energy equation becomes:

a~ = IWlNeIN - )WOUTcOUT +Q+ II Iv t:VYdV - f I Iv PV·YdV (49)

The last two terms are the irreversible a!1d reversible internal energy conversion,

respectively.

Some system codes track enthalpy ~ather than internal energy. Defining:

h =enthalpy E e + PIp

and (50)

H-Vph
we can re\;Tite Equation (39) as follows:

IIL a<P~;P)dV+ I t(Ph-PlY. nds

)

= - It q. nds+ IILEdV+ I If", t:VYdV- L PV·YdV.

Collecting the pressure terms and sim»lifying yields:

13
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(54)

r f f ~ (ph)<lV + f f ph V· n ds
J V at s

+ f f Iv :~ dV + f t P V· n ds - f f Iv P v . V dV . (52)

The surface integral over P can be transformed into a volume integrel using Gauss' theorem

and combined with the last term to give:

f Is p". nds- Jf Lpv. VdV = f fLv· (pV),,~V-J f Lpv. VdV

= JJIv V· VP~'CV.
The enthalpy flux terms can be evaluated in the same manr::~,· that the energy flux terms

were in Equations (46·47). Thus,

f"Is phV· nds= - L W1Nhl!'l + ') WOUThOUT'

Finally, using Equations (48, 50, 53-54), Equation (52.) becomes:

(55)

The integral term invol-ring pressure is often neglected since it is usually negligible

compared to the other terms. For instance, the typical CANDU Heat Transport System

operates at a presst're of 10 MPa, a fluid velocity of -10 mis, and a pressure gradient of less

than 70 kPalm. This translates into roughly 10 kJlkg while e is approximately 1000 kJ/kg.

The turbulent heating term is usually approximated by adding pump heat as a

specific form of Q.

Equation (55) in the steady state, neglecting turbulent heating and the pressure

terms, is the familiar:

Q = L WOUThoUT - ') WIN~N
For a reactor or a boiler (one flow in, one flow out):

(56)

(57)
Q = W(hOUT-hIN) E WCpITOUT-TIN)'

Another special case of equation (55) is obtained by eXpanding the term Q as per

equation (48):

14



-1 Is q'nds+ JJLEdVEQ

Using Newton's Law ofcooling for convection:

q·n = hN IT - T.),

where

q·n = heat flux normal to surface, s,

T '" Temperature offluid~

T = Temperature ofsurface (wall), arid•
h" = heat transfer coefficient,

Equation (55), neglecting the pressure terms, becomes:

~ph aP (ape aT )
y -- - V - "" V - =VpC -

at at at Vat

(48)

(58)

+ VE + JJJv t: V V dV (59)

w:,ich is useful for accounting for heat transfer bp.tween the fl uid and the pipe or tube walis

(eg: boiler heat transfer).

The heat tr'insfer coefficient, h
N

, is supplied through empirical relations. The

turbulent heating term Iffv t: VV dV generally can be neglected ..

6. THE EQUATION OF STATE

From the conservation equations, we have three equations for each phase (nlass,

momentum and energy conservation) and four unknowns:

1) density, p or mags, Vp,

2) velocity, V, or mass flow, W, or momentum, pV,

3) energy, e, or enthalpy, h =e + Pip, or temperature, T = fn(e) or fn(h), and

4) pressure, P.

The fourth equation required for closure is the equation of state:

P =fn(h, p) orfnIT, p)

or

p =fn (P,T), etc. (60)

. ;

Thermodynamic equilibrium is usually assumed, as in the following. For water, H,O or D,O,

tables of properties give the required functional relationship. Often, a curve fit of the tables is

used. This data is input to the computer codes and utilized in table lookup schemes or directly

via the parametric curve fits.

15



(62)

To illustrate the process, consider a fixed volume, 'ri, having a mass of H
2
0, M, and a

specific enthalpy, h. The volume is usually a specified geometric input. Tl.e ml:.SS flows and

enthalpy have, let's assume, been calculated from the simultaneous solution of the

conservation equations. The state equation gives the pressure given the mass ana enthalpy

for that volume, as follows.

The density, P, is an average for that volume, and is calculated from:

p= Mf'ri. (61)

The pressure is guessed (as per the last time iteration, for instance) and the table lookup gives

the associated density and specific enthalpies for liquid and vapour forms of H
2
0. Since the

average density is related to the specific densities by the relation:

P= PrO-Il) + Pgll,
that is, the average density is a volume weighted sum of the specific densitie5. The void

fraction, Q, is readily calculated. Given a relationship between void fraction, Q, and weight

fraction (quality), x, we have the quality, x. An example of such a relationshIp is the no-slip

case:

(_~)(~)Pr =1
\l-x u P

g

The mixture enthalpy, h, is given by

(63)

(64)b = h.( 1 - x) + h x,
I . g

that is, the average or mixture enthalpy is a mess weighted sum of the specific enthalpies.

This mixture enthalpy is compared to the given enthalpy end the go...ess at the pressure is

updated accordingly until convergence is reached.

To help guide the search for the compatible combination of P, h l:.nd P, partial

derivatives, such as aP/ahlp , are "ften used to calculate the next guess.

If the fluid is calculated to be suhcooled, then no positive quality or void exists. The

slope 'of the property functions become very steep so that small variations in p or h can

generate large variations in P. One solution w this problem is to start with the density. use it

in a table lookup to give the saturation pressure and the saturation enthalpy. Then a

correction to the pressure is made to correct for the fact that the.actual enthalpy is less than

the saturation enthalpy. Thus:

ap IP = P
SAT

(p) + - [h - h
SAT

(p)J.
r ah p r

A similar process is used for single phase steam, giving:

aP IP =P SAT (p) + - [h - hSAT (p)J .
g ah p g

Internal energy, e (or sometimes, u), is related to enthalpy, h as fo:loY's:

(65)

(66)

WJG-09c 16



h = I' + Pip (67)

The above calculation of pressure is sometimes performed using the variable, I' or u, rather

than h. The choice is one ofconvenience or 'personal preference only.

7. EMPIRICAL CORRELATIONS

As previously discussed, supporting relations are required to provide the necessary

informaticn for the conservation and state equations. The primary areas where support is

needed are:

l) relationship betwe~n quaiity and void fractions, Le., slip velocities in two phase flow

(to link the mass and energy conservation equations via the state equation);

2) the stress tensor, f (effects ofwa!! shear, turbulence, flow regime and fluid properties

on momentum or t in a word: friction);

3) he"t transler coefficients (to give the heat energy transfer for a given temperature

distribution i!l hel't e>:changers, including steam generators and reactors);

4) thermodynamic properties for the equation ofstate;

5) flow regime maps to guide the seledion of empirical correlations appropri"te to the

flow regime L'"1 question;

6) special compenent data for pumps, valves, steam drums, pressurizers, bleed or

degasser condenso,"", etc; and

7) critical heat flux information (this is not needed for the sol ution of tb~ proc~ss

equations but a measure of engineering limits is needed to guide the use of the

solutions of the process equations as applied to process design.

The above list of correlations, large enough in its own right, is but a subset of the full list that

would be required were it not for a number of key simplifying lissumptions made in the

derivation of the basic equations. The three major assumptions made for the primary heat

transport system are:

1) one dimensional flow:

2) thermal equilibrium (except for the pressurizer under insurge); and

3) one fluid model (i.e. mixture equations).

These are required because 'of state of the art limitations. References [11-21] are

recommended for further reading.

8. SOLUTION OVERVIEW

Because of the complexity of solving the mass, momentum and energy equations plus

supporting equations of state and empirical correlations all subject to initial and boundary

conditions, it is quite easy to "not see the forest for the trees". A skeleton over',iew may help

17
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in this regard. Figure 2 illustrates the equations and the information links between them. In

words, the momentum equation gives the flows or velocities from one node to another, or from

one grid point to another, based on Bgiven pressure, flow, mass Bnd energy distribution. The

updated flows are used by the mass and energy equations to update the mass and energy

contents at each location. This information is given to the equation of state to update the

pressure distribution. This information, along with the new densities and energies are used

by the mornl!ntum equation, and so on. In this manner, a time history of the fluid evolution is

obtained. Ofcourse, only the main variables are noted. The numerouo and diverse empirkal

correlations require updates on the main variables and many secondary variables. This

information also "flows" around the calculation.

A further point to note on the solution overview is that each phase ill a multiphase

flow has e. main information flow path as shown in Figure 3. In the full UVUEUP (unequal

velodty, energy and pressure) model, there are two distinct phases: one for the vapour phase

and one for the liquid phese. If a simplified model was im!'Osed, this essentially means that

the planes weald touch at some point. For instance, if equal pressure in both phases was

assumed, then Figure 4 would result. Here, the equation of state i~ common to both plal'es.

The HEM (homogeneous equilibrium model) is the fully collapsed case where both

planes collapse into one (Figure 2). You may find these im&geo to be useful in conceptualizing

the basic equatiolls end how they fit together.

The precise solution procedure that you might employ is case dependent. At present,

no general solution scheme exists becau5e the nuances of specific problems are subtle and

because one cannot usually afford to ignore the efficiency and cost sa\oings gained by tuning a

method t<> a particular case. The economics of using a case specific code are changir,g,

however, with developments in the microcomputer field and with the realization that total

design and analysis time can often be reduced by using a less efficient but more robust code.

Codes such as SOPHT and FIREBIRD are a direct result of this realization. The near term

evolution will likely be affected mostly by microcomputer developments
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NOMENCLATURE

A area

A arl>itrary vector

C concentration

Cp heat capacity at constant pressure

Cv heat capacity at constant volume

e specilicintcrnalenergy

E intf'rnal heat source or sink

f friction factor

f long range or body force

ge gravitational constant

g acceleration due to gravity

h specific enthalpy

hN heat transfer coefficient

H total enthalpy in volume, II

I un; ty tensor

k head loss coefficient

'9 L length
~:3~·

M mass in volume, V

M mom~ntum interchange vector

n unit vector normal to th~ surface

p pressure

q heat flux

Q lumped heat source or sink - - J Is q' nds+J J LEdll

s surface bounding volume, II

S surface sink or source

t time

T temperature

U total internal energ:r:n volume, 'r!

'r! arbitrary fluid volume

V velocity vector

W m~sfiow

x quality (weight fraction)

19
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Greek

a void fraction

y

r
phase volume fra~tion

local sink or source

'I' field variable

p de!lsity

G stress tenS<1r

e angle with respect to horizontal

~ shear stress tensor

Operators

a
at

d

dt

D

Dt

v

f Jf./ )d'J

f Is( )ds

(

« "l>

Subscripts

partial time derivative

total time derivative

~ubstantialtime derivative

Delopemtor

volume integral

surface integr&l

sum over the phases

~ JIs( )ds =cross- sectional average

f liquid (fluid) phase

g vapour(gaseouslphaoe

i summation index for nodes

j summation index for links

k 1,2 (l =liquid,2 = vapour)

S surface

SAT saturated

IN ingoing

OUT outgoing

", ...
,'ll'~
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